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Some porous media possess fibrous structures. Examples include the geologically deformed porous rocks, white matter
in human brain tissue, and fiber-reinforced composite materials. These anisotropic porous media show strong diffusive
anisotropy. This study focused on a system consisting of randomly placed parallel rods as a model of fibrous porous
media, and describes the analysis of three-dimensional diffusive anisotropy through the lattice random walk computer
simulations. The rods were completely impermeable, and nonsorbing random walkers migrate in the percolated pore
space between the parallel rods. Direction-dependent self-diffusivity was calculated by taking the time derivative of
the mean square displacement of the walkers, and its three-dimensional shape was expressed graphically as a shell-like
object by polar representation. Systematic simulations for varied rod packing densities revealed that the shell-like object
was no longer convex ellipsoidal, but was constricted in the direction normal to the rod axis when the maximum-to-
minimum diffusivity ratio of the diffusion ellipsoids exceeded 1.5 (i.e., when the rod volume fraction exceeded 34 vol %).
An analytical solution of the direction-dependent self-diffusivity with constriction is presented for the lattice walk along
a straight pore. The solution suggests that the ellipsoid constriction observed for the randomly placed parallel rods is a
remnant of the anisotropic pore structure of the hexagonal closest packing, which is the end member of the rod packing.
The onset condition of the constriction of the shape of the direction-dependent self-diffusivity is investigated analytically
using a diffusion tensor expression. The analysis reveals that the constriction occurs when the maximum-to-minimum
diffusivity ratio exceeds exactly 1.5, which agrees well with the simulation results. The critical value of 1.5 can also
be applicable to the geologically deformed natural porous rocks having more complex pore structure compared with the
simple rod packing system.
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1. INTRODUCTION walkers in the pore space are restricted by the anisotropic
solid framework, the resultant diffusivity of the walkers
Diffusion through a pore space is an important transpeaiso is anisotropic. Thus, direction-dependent diffusivity
mode in porous media with smalEBlet numbers. The can be analyzed quantitatively for such anisotropic porous
solid framework of some porous media possesses fibroosdia. This study focused on a system consisting of
structures. Examples include the geologically deformedmputer-generated, randomly placed, parallel imperme-
(elongated) pumice rocks (Nakashima et al., 2008), hable rods as a model of fibrous porous media, and involves
man nervous system (Frank, 2002), and fiber-reinforc8d lattice random walk simulations of nonsorbing walk-
composite materials (Guild and Summerscales, 19%8s in the anisotropic discrete pore space between the par-
Teshima et al., 2001). Because trajectories of randathel rods to calculate the walkers’ mean square displace-
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NOMENCLATURE
D diffusion tensor of rank 2 Greek Symbols
D, normalized diffusivity in ther direction
Dyy normalized diffusivity averaged o coordinate for the projection of randormy
on thex — y plane walk trajectories
D, normalized diffusivity in the: direction  (x(t)?) mean square displacement of walkers
u unit vector along thex-axis
1 dimension of a cubic voxel of the (a(1)?)free  (ot(T)?) for the lattice walk in free
three-dimensional image system space
n number of random walkers 5 complementary angle &f (radians)
T,Y, 2 Cartesian coordinate 3 volume fraction of solid rods in the
(x(t)?), mean square displacement of walkers porous system (vol %)
(y(7)?), along ther-, y-, andz-axis, 0, polar coordinate (deg)
(z(7)?)  respectively T dimensionless integer time

ment along an arbitrary direction in 3D space. Directiotate shape of the direction-dependent self-diffusivity was
dependent diffusivity was calculated by calculating thevestigated analytically using a diffusion tensor expres-
time derivative of the directional mean square displacgion.

ment, and expressed graphically as a shell-like 3D object

by polar representation. Extensive simulations were CON- = Al CULATION OF AN ANISOTROPIC
ducted by systematically varying rod packing density, and DIEEUSIVITY FOR A RANDOMLY PACKED
the effects of packing density on the 3D shape of the shell- ROD SYSTEM

like object were analyzed thoroughly.

Particular attention was paid to the unusual shagé)e method for calculating an anisotropic self-diffusivity
namely, constriction of the direction-dependent diffusiby 3D lattice random walk in the pore space is outlined.
ity. Previous studies have suggested that a polar repfée lattice random walk algorithm is useful for analy-
sentation of the direction-dependent diffusivity for highlgis of 3D diffusion in discrete or digitized porous me-
anisotropic fibrous porous media is no longer convex @ia (Nakashima and Watanabe, 2002; Nakashima et al.,
lipsoidal, but is constricted in the direction of minimun2004). A lattice walk Mathematica program (Dellip-
diffusivity for nervous systems (Frank, 2002) and faoidM6.nb) was developed to calculate the anisotropic
pumice rocks (Nakashima et al., 2008). The present sidiffusivity. The following is only an outline of the
ulation study reveals that the constriction of the directiomethod; for further information about subjects such as
dependent self-diffusivity also occurred for the randomthe lattice walk algorithm and data processing of Dellip-
packed parallel rod system, a very simple model systseidM6.nb, refer to Nakashima and Kamiya (2007) and
compared with nervous and rock systems. Although thédekashima et al. (2008).
are studies on the anisotropic diffusion in fibrous porous As a model of fibrous porous media, 3D digital images
media (e.g., Frank, 2002; Sen and Basser, 2005; Jiamfetandomly placed parallel rods were computer gener-
al., 2007; Fieremans et al., 2008), few studies exist on @ed by the random sequential packing algorithm (Tane-
systematic and quantitative analysis of the constrictionmiura, 1988). The image system consists of parallel solid
the 3D shape of the direction-dependent self-diffusivityods with infinite length and finite uniform diameter. Each
To understand the nature of the constriction, an exaotl was placed randomly and sequentially if it did not
solution of the direction-dependent self-diffusivity wittoverlap any rods already placed. If a rod overlapped any
constriction was presented for the lattice walk in a straigtads already placed, the rod was removed and a new trial
pore. The onset mechanism of the constriction of the preas conducted. An example of the discrete image system
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consisting of numerous cubic voxels is shown in Fig. 1kated pore clusters was as small as 0.033 vol %, while that
The image system is characterized by a single pararf@-the single percolated pore cluster was 45.970 vol %,
ter: volume fraction of the rods, Rods are completely even for a densely packed systemeof 53.997 vol %.
impermeable, and nonsorbing random walkers migrateTihis demonstrates that almost all of the pores are con-
the percolated pore space between the parallel rods. Oweted to form a single large pore cluster responsible for
ing to the blocky nature of discrete images, too smading-distance diffusive transport. However, cluster label-
rod diameter values are undesirable to approximate thg preprocessing was applied to all of the rod image sys-
smooth outline of rods. Too large diameter values aiems to maximize the accuracy of the simulations.
unacceptable to complete long-distance diffusion simu- The program DellipsoidM6.nb executes the nonsorb-
lations in a reasonable time. After some trial and errang 3D lattice walk on a percolated pore cluster in a sim-
we found that several tens of voxels are suitable. Thrgle cubic lattice image system with a periodic bound-
values (19, 37, and 73 voxels) were employed as the @y condition using a mirror operation (Nakashima et
diameter to confirm independence of the calculated diffak, 2008). Because self-diffusion is assumed, neither
sivity from the diameter value. chemical gradient nor macroscopic diffusive flux ex-
The random walk simulation should be performed onlgts. The starting position of the random walk was cho-
in a percolated pore cluster responsible for macroscopan randomly from among the voxels of the percolated
or long-distance transport of materials (not in isolatgubre cluster. An excellent pseudorandom number gen-
small pores). An example of such undesirable isolatecator, Mersenne Twister, developed by Matsumoto and
pore surrounded by rods is shown in Fig. 1b. Thus, théshimura (1998) was implemented in DellipsoidM6.nb.
raw 3D images generated by random sequential packifige random walker should be nonsorbing because its pur-
need to be preprocessed by cluster labeling (Ikeda et pbse is calculation of the geometrical tortuosity of the
2000; Nakashima and Kamiya, 2007) to exclude isolatpdre structure, and undesirable sorption of walkers on the
pores and to extract a single percolated pore cluster. Fashd surface should be eliminated.
tunately, we confirmed that the influence of isolated poresBefore the simulation of the rod system, the nonsorb-
was almost negligible owing to their small volume fradng lattice random walk through the percolated pore clus-
tion values. For example, the volume fraction of all isder by DellipsoidM6.nb was performed for the 3D image

percolated
pore

—<

€ =34 vol.% €=34vol.%
(@ (b)

FIG. 1. Randomly placed parallel rods (green) running in thaxis. a) The z-y plane consists of 3060cubic

voxels, and the diameter of each rod is 37 voxels. The pore voxels are transparent. The number of the rods embedded
in the image system is 2820. The rod volume fractigns 34 vol %.b) Zoom of (a) viewed from the-axis. A pore

cluster (blue) is completely surrounded by rods (green) and isolated from the percolated pore cluster (orange)

Volume 13, Number 1, 2010



4 Nakashima & Kamiya

system of the randomly placed pointlike obstacles (niotthe present study refers to the diffusivity in porous me-
rods) to confirm the validity of the program. The obdia divided by that in free space, and the tortuosity is its
tained diffusivity value agreed well with that in the litteciprocal. Thus, we have

erature (Trinh et al., 2000) within an acceptable error. For

example, the isotropic diffusivity for the obstacle volume normalized diffusivity = #
fraction of 50 vol % normalized by that in free space av- tortuosity @
eraged over 200,000 walkers was calculated to be 0.216 d(a(1)?) /dt

by DellipsoidM6.nb; that for the obstacle volume fraction - ez ® T oo

of 30 vol % was 0.535. The literature value for the iden-
tical porous system is- 0.22 and~ 0.54, respectively, The normalized diffusivity is unity for the random walk
demonstrating the reliable performance of our programn free space, and less than unity for that in porous media
The diffusivity along any direction in 3D space is calowing to the obstructive effect of the solid framework.
culated as follows. Each 3D random walk trajectory iBhe asymptote value (i.et, — o) is essential because
projected on thex-axis originating from the center of thethe normalized diffusivity can be overestimated due to the
3D image system (Fig. 2). Displacement on thaxis is short diffusion distance compared with pore size if the
used to calculate the walkers’ mean square displacem&mg derivative is taken at a smatl value (Nakashima

(a(T)?), in the « direction, and Watanabe, 2002). For an identical set of random
walk trajectories, thex-axis is systematically scanned on
1 & the upper-half plane of the 3D polar coordinate system
2 _ Iy (]2
(7)) = ; [t (7) — ox; (0)] () (Fig. 2) to express the directional mean square displace-

ment as a function of anglés and ¢. Equation (2) is
wheren is the number of random walkers, is the di- again applied to the mean square displacement to obtain
mensionless integer timer (= 0,1,2,3,...), o;(7) is the normalized diffusion coefficient depending @mand
the coordinate of the walker’s position on theaxis at ¢- Typically, 6 covers0,1,2,...90 deg, andd covers
time 7 for the ith walker, and;(0) is the initial posi- 0,1,2,...359 deg. Thus, the number of data points ob-
tion of the ith walker. The exact solution for a latticd@ined for the normalized diffusivity can be as large as
walk in free space (i.e., porosity = 100 vol %)?) .o, 90 x 360 + 1 = 32,401, which is usually sufficient to

is given by (a®)qe. = £21/3 where/ is the lattice con- evaluate the diffusive anisotropy of porous media.

stant of the simple cubic lattice (i.e., the dimension of The normalized diffusivity, which depends @énand

a cubic voxel). The diffusion coefficient is proportionabs can be visualized as a shell-like object by polar repre-
to the time derivative of the mean square displacem&gntation. Using a diffusion tens@, we have

(Nakashima and Kamiya, 2007). Normalized diffusivity T
normalized diffusivity = u” Du 3)

whereuw is the unit vector along the-axis (Frank, 2002).

It should be noted that the 3D shape of the shell-like ob-
ject calculated by Eq. (3) is not exactly identical to the
diffusion tensor ellipsoid describing the eigenvectors and
eigenvalues ofD. The nature of the rod packing parallel
to the z-axis (Fig. 1) ensures that the shape of the diffu-
sion tensor ellipsoid is a cigar-shaped prolate spheroid. If
the stochastic fluctuation is negligible, we have

Dgy 0 0
X D=1 0 Dyy O (4)
0 0 Dz

FIG. 2: Arandom walk trajectory projected on tlee whereD,, is the normalized diffusivity on the-y plane
axis originating from the center of the 3D image systeend D, is the normalized diffusivity in the direction.
to calculate the walkers’ mean square displacement in fitge raw data set of the normalized diffusion coefficients
o direction calculated by Eq. (2) was fitted to Eq. (3) in terms of the
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second moment of the object as described by Ikeda etTdle CPU time of DellipsoidM6.nb required for calcula-
(2000). First, the search for a principal axis yielding th#on of each ellipsoid was 5.9 h using a personal computer
minimum value of the second moment was performed {®C) with an Intel Core2 Duo T7600 CPU (2.33 GHz) and
assign it to the major axis. Second, a principal axis yield-GB RAM running Windows XP. Theoretically, the ellip-
ing the maximum value of the second moment (i.e., minsoid fore = 0 vol % (i.e., free space) should be a com-
axis) was searched in the direction perpendicular to thkete sphere with a radius of unity. Figure 3 shows that the
major axis. Finally, the third principal axis perpendiculditted major, intermediate, and minor principal values of
to both the major and minor axes was automatically chitve normalized diffusivity averaged over 400,000 walkers
sen as the intermediate axis. The crossing points of there 1.016, 1.006, and 1.001, respectively. These are very
shell-like object and the three principle axes were detetose to the theoretical value of unity, demonstrating that
mined to be the eigenvalues bf (i.e., D, andD.). our random walk simulations were performed reliably.
Figure 3 clearly shows that the shape of the direction-
dependent normalized diffusivity becomes prolate in the
z direction for nonzera values. This prolate nature is
Extensive simulations were conducted by systematicatlyconsequence of the pore structure being less tortuous
varying the rod volume fraction, and the effects of roih the longitudinal direction of the rod and more tortu-
volume fraction on the shape and dimensions of the pass in thez-y direction. Note that in Fig. 3 the shape of
lar representation of the direction-dependent normalizé@ normalized diffusivity is no longer convex ellipsoidal
diffusivity were analyzed. Examples of the normalizetdr a largee value, but is constricted in the-y direc-
diffusivity obtained for some values of the rod volum#on. The constriction is also found for highly anisotropic
fraction are shown in Fig. 3. This 3D shell-like object ifbrous porous media (Frank, 2002; Nakashima et al.,
a result of the raw data, and the distances of each pdif08). The occurrence of the constriction is a main fo-
on the shell from the origin are the normalized diffusivsus of the present study, and results of detailed analysis
ity values calculated for 32,401 integé, (p) pairs (i.e., are shown in Figs. 4—6.
0=0,1,2,...90deg andp = 0,1,2,...359 deg). The Figure 4 shows the full set of lattice walk simula-
number of maximum time steps was= 300, 000, suf- tion outputs fore = 51 vol % of Fig. 3. The mean
ficient to travel a distance relatively long compared witbquare displacements along the y-, and z-axes indi-
the pore size. The number of the random walketsin cated in Fig. 1a, as calculated by Eq. (1), are shown in
Eqg. (1) was as large as 400,000 to reduce the undesirdfitg 4a. Equation (1) becomes simple if the cubic voxel
stochastic fluctuation of the mean square displacematitmension,?, is unity. Thus,/ = 1 was assumed in

3. RESULTS

X
€=0vol.% € =33 vol.% €=51vol.%

FIG. 3: View from above of the wireframe rendering of normalized diffusivity calculated by Eq. (2) for three values
of rod fractione. The dimension of the whole image system and rod diameter value are identical to those in Fig. 1.
The three principal axes are superimposed
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Dimensionless mean-square displacement
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Nakashima & Kamiya

FIG. 4: Detailed results of a random walk simulation foe= 51 vol %. a) Dimensionless mean square displacement
along thez-, y-, and z-axes averaged over 400,000 walkets) Snapshot of 400,000 walkers at= 300, 000.
c) Wireframe rendering of the normalized diffusivity viewed along the three principal axes
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FIG. 5: Two-dimensional polar representation of normalized diffusivity for various values of rod volume fraction
(in vol %). Normalized diffusivity for the hexagonal closest rod packing ef 7 /(12)%° ~ 90.7 vol % and that for
Eq. (5) also are plotted, but it is difficult to distinguish between them with this image resolution
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FIG. 6: Eigenvalues [i.e.D,, andD, of Eq. (4)] and major axis inclinations as a function of rod volume fraction,
e. The solid line was placed as a guide. The two regimes with a boundary (vertical dotted line} 8 vol %

are illustrated. The theoretical value fbr, is shown by a horizontal dotted lind{ = 1). The upper bound of

for the random sequential rod packing by Tanemura (1988) is indicated by a vertical broken 4ing4(7 vol %).
Theoretical values for the hexagonal closest packing of parallel rods also are indicaigd=byl andD,,, = 0 at

e =7/(12)%% ~ 90.7 vol %
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Fig. 4a, yielding a dimensionless mean square displaedle to average the normalized diffusivity our= 0 to
ment. The mean square displacement inzldérection is 359 deg at a specifie@l value. The averaged cross sec-
significantly larger than those in theandy directions, tion of the shell-like object (Fig. 5) obtained ésdepen-
and quantitiegz?) and(y?) are indistinguishable, imply- dent only, and clearly shows that the isotropic circle for
ing that the shape of the direction-dependent normalized-= 0 vol % becomes prolate as thevalue increases. It
diffusivity is a cigar-shaped prolate spheroid. To avoighould be noted that when thevalue exceeds the crit-
an undesirable overestimate of the normalized diffusiical value of 34 vol %, constriction of the polar repre-
ity due to a short diffusion distance compared with posentation of the normalized diffusivity appears in the di-
size (Nakashima and Kamiya, 2007), a sufficiently largection of minimum diffusivity (i.e., in the direction of
value (as large as 300,000) was employed for the r&h= 90 deg). This constriction becomes most evident for
dom walk time step to obtain linear (not convex) meahe hexagonal closest rod packing statustfil 1972) of
square displacement. As a result, the convex portioneof 7/(12)%° ~ 90.7 vol %.

the mean square displacement curve is limited in the veryEffects ofe on D,,, and D, are summarized in Fig. 6.
early stage (i.e.t < 10000). This time interval with TheD,, value is the normalized diffusivity averaged on
a convex mean square displacement should be eliminateslz-y plane (i.e., normalized diffusivity averaged over
from the calculation of normalized diffusivity because th¢ = 0 to 359 deg aé = 90 deg), whileD, is the normal-
time derivative [Eq. (2)] has not yet reached the asymiged diffusivity in thez direction (i.e., normalized diffu-
tote value. Thus, to obtain a reliable diffusion ellipsoidivity for 6 = 0 deg). TheoreticallyD,, and D, should

the time derivative was calculated using the very last pdye dependent only onand independent of rod diameter,
tion of the mean square displacement time series datavidrich is confirmed by Fig. 6. The value 6f,, decreases

all simulations of the present study, namely, the slopéth increasinge while D, remains constant. The tortu-
value of (x(7)?) between the maximum time step andsity normal to the:-axis increases with rod fraction be-
75% of it was employed. For example, the normalizeghuse the rods act as obstacles for the random walkers.
diffusivity was calculated using the difference(@f(t)?) This mechanism is responsible for the decreas®p

att = 300,000 and 300,000 x 0.75 = 225,000 for with increasings Because all rods are completely in par-
Fig. 4a. The final positions of all the walkers are showailel, no obstruction exists for walkers migrating in the
in Fig. 4b. The origin of the 3D image is the starting-axis. As a result, the tortuosity along thexis is iden-
position of each walker. The unit of the axes is the ctieal to that in free space, ardd, remains unity, as shown
bic voxel dimension/{. Figure 4b is the diffusion front, in Fig. 6.

showing again the cigar-shaped prolate spheroid. ThisThe cigar-shaped prolate spheroid of the direction-
was confirmed by the ellipsoid fitting result that inclinadependent diffusivity for the fibrous system in Fig. 1 is
tion 0 of the ellipsoid major axis was as small as 0 degymmetric with respect to the-axis. Therefore, the in-
with D, = 0.47 andD, = 1.01, clearly indicating that clination,® of the major axis of spheroid should be 0 deg
the direction-dependent normalized diffusivity is a proFhe calculated inclination of the major axis is shown in
late spheroid and the elongation direction was parallelfy. 6. Although a slight discrepancy from 0 deg exists
the z-axis. The prolate shape can be seen more cleafiyt is derived from the stochastic nature of the pseudo-
when viewed from the principal axes (Fig. 4d). Particiandom number generator used in the random rod pack-
larly when viewed from the minor and intermediate axegg and lattice random walk, Fig. 6 shows tiat- 0 deg.

the unusual shape constricted in the direction normalttais demonstrates that our random walk simulations were
the major axis is obvious. performed successfully.

The onset of the constriction was investigated in de- Fieremans et al. (2008) performed diffusion simula-
tail by calculating the shape of the 3D shell-like object difons in randomly packed parallel rods. Although they
the normalized diffusivity for various values of rod voldid not analyze the constriction of the 3D shape of the
ume fraction,e. The number of walkers, the maximundirection-dependent diffusivity, som®,,, values have
time step, dimension of the whole image system, and rbeen reported and incorporated in Fig. 6. The results
diameter are identical to those in Figs. 1, 3, and 4. Thg Fieremans et al. (2008) agree approximately with the
longitudinal direction of the parallel rods lies along the present study. However, there is a slight discrepancy, par-
direction (Fig. 1). Therefore, the normalized diffusivityicularly for ¢ > 40 vol %. The discrepancy is probably
for the fibrous system should be independenthofi.e., derived from the difference of the diffusion distance of the
symmetric with respect to the-axis). Thus, it is reason-random walkers. To save computation time, Fieremans et
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al. (2008) performed short-distance simulations that ttenger convex ellipsoidal, but was constricted in the di-
ratio of the diffusion distance in the-y plane to the rod rection normal to the rod axis when the rod volume frac-
diameter was as small as 2.5, and predicted the asytipa exceeded 34 vol % (Fig. 5). This study is the first
tote (i.e.,T — oo) tortuosity value using the two-pointreport that constriction of the direction-dependent diffu-
Pade approximation, which yields a worse fit for high sivity occurs in a randomly packed parallel rod system,
values. In contrast, we have performed long-distance ranvery simple model system having a unidirectional pore
dom walk (typically the ratio of the diffusion distance tatructure. To understand the nature of the constriction, an
the rod diameter was' 10). A D, value of 0.573 for a exact solution of the direction-dependent self-diffusivity
90,000 time step (the ratio was 2.5) obtained by Del- with constriction was presented for the lattice walk in a
lipsoidM6.nb simulation is plotted far = 48 vol %. The straight pore. A lattice walk in a straight pore cluster em-
obtainedD,, value is significantly larger than thB,, beddedinasolid (Fig. 7) is a simple but effective model to
value of 0.537 obtained by a long-distance (the ratio wasamine the diffusion in fibrous porous media. Random
~ 18) simulation as plotted in Fig. 6, and lies on the trendalkers diffuse in the straight pore cluster by colliding
of the data points by Fieremans et al. (2008). This suggainst the wall. Walker motion is completely restricted
ports the interpretation described above for the discreépthex andy directions, and completely free in theli-
ancy of theD,,, values. rection. The resultant mean square displacement along
Theoretically,D, = 1 for ¢ <~ 90.7 vol % because athe z-axis, (z(1)?), is £>t/3 (Nakashima and Kamiya,
random walk in the: direction is identical to that in free 2007). When the unidirectional random walk trajectory
space. There is a slight fluctuation in the PZ values is projected on thex-axis (Fig. 2) with inclinatiord, the
plotted in Fig. 6 derived from the stochastic nature of thanit length? should be replaced withicos 8. Substituting
pseudorandom number generator. According to a statigti{t)?) = (¢ cos 0)%t/3 into Eq. (2) gives
cal analysis of the 27 data points, the averag®ofwas
1.00004, very close to the theoretical value of unity, and normalized diffusivity= cos” 8 ®)
the standard deviation normalized by the theoretical va
was as small as 0.5 %, indicating acceptable accuracy
precision of the computer simulations.

ﬁjﬁg 3D shape is obtained by rotating Eq. (4) with re-
spect to thez-axis. Equation (5) is plotted in Fig. 5,
clearly showing the ellipsoid constriction in the direction

4. DISCUSSION

Lattice random walk simulations were conducted in the
randomly packed rod system shown in Fig. 1. Results Q,I
confirmed that the direction-dependent normalized diffu-

sivity is prolate in the longitudinal direction of the parallel

rods. The distortion of the ellipsoidal shape was calcu-

lated by systematically changing values for the rod vol-

ume fractionge. The results are summarized in Figs. 36, axis Z
and show that diffusivity normal to the longitudinal direc- a
tion decreases with increasieglue to obstruction of the e

impermeable parallel rods while diffusivity along the lon-

gitudinal direction remained constant. The parallel rod

system examined in the present study is a model for fi-

brous porous media that are commonly found in many y

fields such as biology, material engineering, and geol-

ogy. Therefore, the quantitative behavior of the direction- X

dependent normalized diffusivity (Figs. 3-6) is useful to

estimate the diffusive transport properties in real fibro#sG. 7: Straight pore cluster embedded in a solid as an

porous media found in such diverse fields. example of strongly anisotropic 3D fibrous porous media.
Systematic simulations for varied rod volume fractioriBhe longitudinal length of the cluster in theaxis is infi-

revealed that the 3D shape of the polar representatitite, and the cross-sectional are#%svhere? is the cubic

of the direction-dependent normalized diffusivity was neoxel dimension
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of @ = 90 deg. Itis difficult to distinguish Eq. (5) from theand? is the complementary angle 6f The correspond-
normalized diffusivity calculated for the hexagonal closng diffusion tensor is
est packing of parallel rods (Fig. 5). Thus, itis reasonable
to take that Eq. (5) is for an end member of the densely D ( D, 0 ) ©6)
packed rod system. The mechanism of onset of the con- L0 Dz
striction can then be explained as follows. Diffusion in the
randomly placed rod system iswixture(not a mechani- where D, > D,. On the marginal or neutral condi-
cal mixture) of the two end members: isotropic diffusiotion, the shape of the polar representation of the direction-
in free spaced = 0 vol %) and highly anisotropic diffu- dependent diffusivity is straight near theaxis. This in-
sion in the hexagonal closest packirng~ 90.7 vol %). dicates that OAB in Fig. 8 is a right-angled triangle and
For a system with a relatively low value, the contribu- yieldsOB x cosd = OA for 6 <« 1. Substituting Eq. (3)
tion of the former is dominant, and the constriction binto OB and OA forcos § ~ 1 — §2/2 andsin § ~ §, we
the latter end member is masked, yielding a cigar-shageaie
prolate spheroid without constriction. In contrast, for a 3 ) 4
system with arx value of> 34 vol %, the contribution of <Dz - QDI) 8% +0(8%) =0 )
Eq. (5) becomes dominant, eliminating the convex nature
of the prolate spheroid and producing the constriction rfuation (7) indicates that the constriction of the cigar-
the® = 90 deg direction. Thus, the constriction of the 3Bhaped prolate spheroid occurs whep D, exceeds ex-
shape of the direction-dependent normalized diffusivigctly 1.5, which agrees well with the 3D simulation re-
observed for randomly placed parallel rods iemnant sults of Figs. 5 and 6. It is straightforward to examine
of the hexagonal closest packing status. to the constriction of disk-shaped oblate spheroid (i.e.,
As shown in Figs. 5 and 6, the onset of the constri€. < D) using the similar formulation to obtain the
tion of the prolate spheroid at= 34 vol % corresponds critical value of D./D, = 2/3 (i.e., reciprocal of 1.5)
to D./D,, = 1/0.664, which is~ 1.5. To elucidate the with respect to the onset of the constriction for the oblate
onset mechanism of the constrictionat/D,, ~ 1.5, Spheroid.
the following analysis was performed. Consider two- Nakashima et al. (2008) performed random walk sim-
dimensional anisotropic diffusion in the-z plane for ulations for natural anisotropic porous rocks, and found
simplicity (Fig. 8). The direction-dependent normalizethat the constriction of the prolate-oblate diffusion ellip-
diffusivity is given by Eq. (3) wherar = (cos §,sin8) soids occurred when the maximum-to-minimum diffusiv-
ity ratio of the direction-dependent diffusivity exceeded
~ 1.5. An oblate (not prolate) diffusion ellipsoid with
Z constriction has been observed for water self-diffusion in
A discoidal clay gels wheD./D, =~ 2/3 using nuclear
magnetic resonance spectroscopy (Porion et al., 2001). It
s is noteworthy that the critical value of 1.5 (or its recipro-
e . cal, 2/3) is common among the rod packing system, natu-
6 “ ral rocks, and clay gels even though the pore structure of
A > X the synthetic system of parallel rods (Fig. 1) and that of
0 § natural rocks/gels are quite different.
without Anisotropic thermal conductivity is one of some im-
constriction .’ portant subjects for fibrous porous media (Tien and Vafai,
i 1979). The thermal conduction phenomenon obeys a
marginal with parabolic partial differential equation as well as the mate-
constriction rial diffusion phenomenon. Thus, the present study pre-
dicts that constriction of the 3D shape of the direction-
FIG. 8: Two-dimensional schematic of the shape of ttedependent thermal diffusivity also would occur if the ma-
direction-dependent normalized diffusivity curves negrial possesses high anisotropy with respect to thermal
the z-axis. Three curves (concave, convex, and straigbjnductivity. Examples include anisotropic porous metals
are for the with-, without-constriction, and marginatomposed of conductive metal and less conductive elon-
cases, respectively gated gas-filled pores (Nakajima, 2007).
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